石墨烯是一种二维晶体,具有优良的电学、光学和热学特性,单层石墨烯的横向热导率可以高达5300 W/(m·K),远远高于碳化硅、氮化铝等热沉材料。 YAN 等在氮化镓晶体管中生长了一层石墨烯,引入了一种新的散热通道,显著提高了散热效率。 WANG 等设计了基于石墨烯薄膜热沉封装结构,在芯片上直接覆盖一层石墨烯薄膜,利用石墨烯基薄膜的平面内高导热特性,将有源区产生的热量横向快速传递分散,使有源区域的热量可以从衬底向下传导,也可以通过石墨烯基薄膜水平传导到铜散热器。由于芯片和石墨烯基薄膜之间没有焊料,在封装过程中没有引入过多的热应力,这使得有源区应力较小,确保了半导体激光器的可靠性。实验结果表明,与非石墨烯薄膜封装结构相比,石墨烯基薄膜封装结构的有源区结温度降低了 9.1 K,热阻降低了 1.52 K/W。 岳云震等采用 Ansys Workbench 有限元方法,分别对将氮化铝陶瓷、钨铜、碳化硅晶片、化学气相沉积(CVD)金刚石和石墨烯作为过渡热沉封装的半导体激光器进行对比研究,从器件工作状态下温度、热应力及热应变分布进行模拟,结果显示:基于碳化硅晶片封装的器件热应力最低,而且器件温度比氮化铝、钨铜封装低了 2.18℃、3.078℃;基于 CVD 金刚石、石墨烯封装的器件热阻最低,但是由于热膨胀系数相差较大,造成热应力较大,影响了激光器的功率输出和可靠性。 05 焊料的选择 半导体激光器芯片有源区产生的热量是通过焊料层传递到过渡热沉层,所以焊料的选择非常重要,不仅要考虑焊料的热导率,还要考虑焊料与接触层之间的热膨胀系数失配,以及能否适应激光器温度的变化等。合理选择焊料和封装工艺,能使芯片产生的热量更快地向热沉传递,有效提高器件的寿命和可靠性。 目前常用焊料可分为 2 种:一种是软焊料,有铟(In)焊料、纳米银焊膏(Nanosilver Paste)等;另一种是硬焊料,常用的是金锡(Au80Sn20)焊料。 铟焊料具有熔点低、延展性好、热传导性能好等优点,封装工艺简单,适合快速封装。但铟容易氧化,形成氧化铟(In2O3)薄膜,影响导电性能,而且在激光器高温工作时,铟容易产生铟须,使焊料层疲劳,最终导致激光器损坏。 纳米银焊膏是由纳米级银颗粒混合粘结剂、表面活性剂等制备成的,其中纳米银颗粒占 80%以上。由于其纳米银颗粒粒径很小,多在 10~50 nm,烧结过程可以不经过液相烧结直接固化,其烧结温度可以低至100℃。纳米银焊膏具有低温下快速烧结、高温工作稳定、热导率高、热膨胀系数小等性能,越来越受到科研人员关注,未来可能会成为主流焊料。 金锡焊料硬度较高,抗疲劳、抗蠕变性能好,具有良好的电导率和热导率,无需助焊剂,熔化温度为280℃,凝固温度为 277℃。金锡焊料抗拉强度276 MPa,受应力作用容易产生弹性形变,延展性较差,在烧结过程中容易引入应力。相较于其他焊料,金锡焊料的成本更高,现在多采用定制的金锡预成型焊片,可以精确控制金锡的成分和厚度,降低封装成本。 彭勃等对铟、金锡焊料以及纳米银焊膏 3 种焊料封装激光器进行理论计算研究,得出金锡焊料和纳米银焊膏的应力和应变值相对铟较小。这是因为这 2 种焊料的热膨胀系数比铟焊料小,其中纳米银焊膏热膨胀系数极小,延展性非常好,降低了互连界面的应力。焊料性能参数如表 2 所示。 表 2 焊料性能参数 06 焊料的厚度 无论是铟焊料、纳米银焊膏还是金锡焊料,热膨胀系数、弹性模量均与激光器芯片和过渡热沉不同,焊料层厚度的大小将影响热应力分布和热量传递。根据前面公式(2)可以看出,焊料的厚度与激光器的热阻成正比,焊料层厚度的增加会使激光器的热阻升高。
|