摘要:近些年,在市场应用驱动下,半导体激光器的输出功率越来越高,器件产生的热量也在增加,同时封装结构要求也更加紧凑,这对半导体激光器的热管理提出了更高的要求。当今,激光器的外延生长技术和芯片加工工艺已经成熟,封装技术的提升已经成为解决散热问题的关键,其中过渡热沉技术能有效降低激光器的热阻,提高可靠性,而且便于操作,已经是高功率半导体激光器封装的首要选择。从过渡热沉散热原理、热应力、过渡热沉材料和焊料选择等方面对过渡热沉技术进行了研究,并对未来的研究热点进行了探讨。 01 研究背景 半导体激光器具有体积小、质量轻、能耗小、易调制、可以批量化生产等众多优点,被广泛应用于工业加工、信息通信、医疗、生命科学和军事等领域。 虽然半导体激光器电光转换效率高,但在激光器芯片有源区内存在非辐射复合损耗和自由载流子的吸收,工作时会产生大量的热;同时,各层材料存在着电阻,也会产生焦耳热,这使得很大一部分电能转化为热能,再加上芯片材料的热导率低,热量不能快速传导出去,从而导致有源区温度升高,有源区材料禁带宽度变小,出现激射波长红移、效率降低、功率降低、阈值电流增大等一系列的问题,严重影响激光器的寿命和可靠性。 当前,随着技术不断更新进步,应用市场对激光器的输出功率提出了更高的要求,而输出功率的提高,伴随着的则是更多热量的产生,这对激光器的散热管理提出了更高的要求。 半导体激光器的散热问题一直是国内外研究热点。提升激光器的散热能力,可以减少热量在有源区的积蓄,降低有源区的温度,提高效率,降低工作电流,减小波长,改善光斑输出等。 研究发现,激光器芯片对传导冷却半导体激光器的总散热贡献仅为8%,因此,激光器的散热设计应更多地集中在封装上。 高功率半导体激光器散热封装方式主要有自然对流热沉冷却、微通道、电制冷和喷雾冷却等形式。其中,对于单管半导体激光器来说,自然对流热沉冷却方式易于加工和组装,是最经济、常用的冷却方式。一般采用高热导率材料做热沉,扩大自然对流散热面积来增加散热量,降低激光芯片的温度。 为使激光器芯片发光的有源区更贴近热沉,减少热量传输路径,便于热量更快地传输出去,现在普遍采用芯片朝下的倒装封装结构,通过铟或者金锡等焊料把半导体激光器芯片粘贴到热沉上。 铜具有高热导率和导电性,在半导体激光器的封装中常被用作热沉,但铜的热膨胀系数与芯片的热膨胀系数相差近 1.58 倍,容易产生热应力,影响激光器的输出性能。在芯片和常规热沉之间加入高热导率且膨胀系数接近芯片热膨胀系数的过渡热沉,可以有效解决这一问题。 本文从高功率半导体激光器散热原理出发,对各种过渡热沉材料和封装用的焊料进行对比分析,得到了较为理想的过渡热沉材料和封装工艺,并对未来封装技术进行了展望。 02 半导体激光器散热原理 半导体激光器的封装结构如图 1 所示,激光器热量绝大部分产生在芯片的有源区,通过焊料层、绝缘层、界面层传导至过渡热沉和常规热沉,常规热沉与冷却介质接触形成对流换热,将热量散出。 图 1 半导体激光器热沉传导散热示意 若有源区的温度为 Tj,热沉底面的温度为 T0,则有源区和热沉表面形成的温度差ΔT 为: ΔT=Tj-T0 激光器中热传递遇到的阻力,即热阻 Rth 可以表示为: (1) 在式(1)中,ΔP 为热功率,即输入功率 P 减去光功率 Po,输入功率 P 可以通过测量激光器的电压 U和输入电流 I 计算得出,光功率 Po 可以通过光功率计测量得到。 在实验中,一般采用波长偏移法测量激光器的热阻。在连续波或脉冲模式下,测量热沉在不同温度时激光器的波长,计算出波长飘移系数λ(T):
|