准分子激光技术(准分子激光气体产生激光)在制造业微加工应用不断扩大,包括钻石等激光打标、材料表面改性、高碳钢淬火、三维加工。准分子激光技术在微加工中可以得到小孔,刻线,以及其他三维复杂的图案,如果结合有效反馈( 比如,用激光测量)来控制光的输入,加工精度在深度方向可达亚微米量级。准分子激光气体使用短波长使得侧向的精度可达亚微米量级;然而,实现亚微米量级不仅依赖于激光性能。它还要求高重复率的运动控制,通常使用带空气轴承的平台来移动基底和镜片,镜片移动需要考虑到足够的焦深,同时,实际加工时需要足够大的视场。准分子激光气体尤其适合大面积,集中且重复性强的图案。例如,在多片模块上打孔的过程。目前,在这方面的应用中,固态或者CO2激光器与振镜扫描相结合的技术占了主导地位。然而,当生产量增大时,电子元件的结构(包括微通道)会被缩小。在高密度元件数量增多,微通道尺寸却减小的这个方面,准分子激光图像制作相比其他直接写入技术就更具有竞争力。举例来说,利用光掩膜技术与底层的“步进和重复”运动相结合的过程,准分子激光器每秒可以得到>10000个过孔。大规模的并行打孔能力 (如图1) 还被用来生产过滤器,被用来在喷墨打印机中进行微粒过滤,该特点还被用于生产新一代的医学呼吸器,它目前正接受美国食品与药物管理局(FDA)的评估。 微型化的细胞培养工具(通常被称为“芯片上的实验室”),是利用248 nm的准分子激光气体在聚碳酸酯和其他塑料上制作而成的。这里,可以使用单束激光来得到微型坑和微通道,以及微米量级的通孔(如图4)。然后使用金属沉积技术来密闭这些通孔,从而起到密封和导电两方面效果。 另一个快速发展的应用领域是薄膜直接制备图形。在这个过程中,激光能量穿过薄膜,基底材料与薄膜的交界处被底部材料吸收。在交界面处,材料在短时间内被蒸发,导致了该处薄膜被去除。这个准分子“TFA”(薄膜烧蚀过程)在薄膜厚度小于1微米时结果最佳。在这些情况中,对薄膜进行去除/制图操作所需的能量小于蒸发同样体积的相同材料所需的能量。实际的例子包括在绝缘基底上的金属薄膜(厚度达1000 nm),它被用于射频识别电路(RFID)和医疗传感器上。需要的话,金属薄膜的厚度可以通过低成本的电镀过程来增加。其他组合还包括在金属上加工绝缘体,在陶瓷上加工聚合物,甚至在聚合物上加工聚合物。大部分的应用是采用卷带式(reel-to-reel)的操作方式,在这里每片薄膜由单个激光脉冲进行加工。 准分子激光器的独特性还在于它们可以加工表面和亚表面的材料;其中一个例子是高碳钢零件的淬火过程。未经退火时,这些钢包含了铁和碳的较大晶体。使用308 nm的准分子激光器可以在微观层面上,使表面的金属层升到共熔区之上,让原子可以自由在金属内迁移。对于碳素钢来说,这个过程仅涉及碳和铁。这里的硬化过程是将相同的主要元素留在表面,而核心材料仍然保持未淬火时的延展性。 对于其他高度可淬火性合金材料,比如铬(或者其他金属)可以移到表面,从而形成独特的表面,比如该表面可能更坚硬,更具有防化学品腐蚀能力,更为光滑。同时,整个零件本身不受影响,仍然保持这些钢材特有的延展性。308 nm的准分子激光被用于铸铁柴油机引擎的汽缸套以得到摩擦力很小的表面。这项Audi公司开发的应用在本刊2005年2月刊中有具体介绍。 另一个表面加工的应用是对CVD金刚石晶片进行微加工和磨平操作,因为其多晶的本质导致了表面不平整。193 nm适用于加工高纯度的金刚石。高精度微加工的实例包括了对磨损表面,线切割模,散热片以及切割工具等进行三维微加工。在线性化的过程中,193 nm或者248 nm的准分子激光被整形成直线状,然后被定位,以便在临界角或者小于临界角情况下对整个表面进行作用。简单的光学理论表明,平整的表面会产生全反射,而不平整的表面点会导致激光被材料所吸收。这样得到的结果是平滑的表面,整个过程是个自中断过程。 使用准分子激光技术所进行的工业加工任务各不相同,这就促使了准分子激光气体在准分子激光技术产品具有更广的输出特性。本质上,所有的应用都要求具有高可靠性,激光寿命更长,运转成本更低。在三方面主要应用的促进下,激光器制造商已经取得了大量重要的技术进步。新一代的准分子激光器维护间隔时间更长,自动调节能力更先进,所需支的拥有成本也更低。广州世源气体等国内气体公司在准分子激光气体的国产化,让准分子激光技术在中国的钻激光打标、材料表面处理、高碳钢的淬火、三维加工等制造业微加工的应用更加广泛。 |