移动设备例如智能手机和平板电脑正在以迅猛的速度增长。由于移动设备变得越来越小,速度越来越快,重量越来越轻,价格越来越便宜,同时也越来越多功 能,并且更复杂,因而零部件的制造也向小型化和精密化发展。对于一些关键的零部件,如半导体芯片、微电子封装、触摸显示屏和印刷电路板(PCBs),它们 将继续面临挑战,例如提高良品率和生产率,同时还要降低成本。这推动了激光在移动设备制造中的广泛应用。由于设备日益复杂,因而需要更多和更复杂的制造工 艺,同时对激光光源的研究进展也提出了更高要求。
【激光网激光门户网综合报道】( 责任编辑:Peter )
用波长和脉冲宽度更短以及低的M2(光束质量)的激光器能 创造一个聚焦更集中的光斑,并能保持最小的热影响区(HAZ),从而实现更精密的微加工。高的能量吸收,尤其是在紫外(UV)波长和短脉冲范围,材料将被 迅速汽化,从而减少热影响区和炭化。较小的聚焦光斑可以实现精度较高、尺寸较小的加工。高功率、高脉冲重复频率(PRF)、脉冲整形和脉冲分裂都可以为提 高微加工的生产率做出贡献。持续的较高的脉冲稳定性能确保过程的可重复性,帮助实现更高的良品率。 传统的紫外Q开关二 极管泵浦固体(DPSS)激光器能合理地满足精密制造的要求,但是它们在实现更高的加工速度和较高的微加工质量方面还有所欠缺。提高加工速度的常用方法是 在保持其他工艺参数不变的同时提高激光的脉冲重复频率。然而,对于典型的Q开关DPSS激光器来说,这是不可能实现的。这些激光器的平均功率和脉冲能量会 随着脉冲重复频率的增加而迅速下降。此外,在脉冲重复频率较高时,激光脉冲宽度和脉冲能量波动往往会大幅增加。 本文将高脉冲重复频率 下,高功率和独立可调的紫外激光脉冲宽度以及先进的脉冲调控技术结合起来,并将其应用于各种微电子材料的微加工中,包括硅(在芯片制造中的应用)、氧化铝 (在微电子封装制造中的应用)、玻璃(触摸显示屏制造中的应用)和铜(印刷电路板和微电子封装制造中的应用)。 半导体制造中的硅刻划 用激光刻划硅片可以替代传统的精密锯切割。由于晶片变得越来越薄,同时激光变得更强大,因而和锯切割相比,激光的优势进一步加强。光粒网小编指出,要想与传统的锯切割竞争,实现更高的划刻速度和更好的切割质量是至关重要的。 我们使用Quasar激光器对厚度小于100μm的抛光单晶硅片进行热损伤最小的高速刻划。在图1中,曲线显示,随着划刻速度的增加,划刻深度会降低 (200 kHz、25ns单脉冲)。在较高的重复频率下使用较高的功率,同时TimeShift技术可以用软件设置范围广泛的脉冲能量和脉冲宽度,最终我们可以看 到,刻划速度提高了差不多3倍(25ns单脉冲,50μm的刻划深度)。
图1 : 硅刻划的深度和速度曲线, 可以看到TimeShift技术带来的优化。 图2显示了刻划产生的碎片和热影响区,它是在单脉冲和能量相同的情况下使用TimeShift技术来创造一个脉冲串(500mm/s和200 kHz)。使用这种技术的划刻可以实现较高的烧蚀质量,并且在上表面会产生较少的碎片,不过划刻的深度要比使用单脉冲的深度高出25%。
图2:使用单脉冲TimeShift技术进行刻划的效果,图(a)中的刻划深度为20μm, 图(b)中的刻划深度为25μm。 氧化铝陶瓷的刻划 氧化铝(Al2O3)陶瓷具有高的介电性能,再加上高强度、耐腐蚀性、高稳定性和相对较低的成本,得以广泛用于微电子封装。在典型的制造过程中,具有多 个模块的大尺寸氧化铝基板最终要被分离成单个的模块(切单)。在常用的刻划技术中(“划片并断开”),使用激光器在基板上进行深的刻划,然后通过机械加压 来使基板断开并分离。高功率紫外激光器可以实现干净、精确的高速刻划。 类似于硅刻划,我们可以看到,当使用Quasar激光器以较高的 速度进行氧化铝刻划时,可以借助较高的功率和TimeShift技术来实现最小的热效应。图3显示,使用了双脉冲串的微加工比单脉冲加工具有很明显的优 势。将20ns单脉冲能量分裂为两个子脉冲,烧蚀深度能增加78%。同样,图4显示了双脉冲模式下进行同样深度的刻划所使用的能量比单脉冲要少40%,同 时上表面的碎片也更少。
图3:氧化铝的刻划深度vs能量注量曲线,显示了TimeShift技术对生产率的影响。
图(a)是使用了单脉冲模式(170μJ/脉冲)的上表面视图,
图(b)是使用了双脉冲模式(170μJ/脉冲)的上表面视图。这两种情况中的划刻深度都是4μm。 |